Irregularity Measure of Graphs
نویسندگان
چکیده
A simple graph G is said to be regular if its vertices have the same number of neighbors. Otherwise, id="M2"> nonregular. So far, various formulas, such as Albertson index, total and degree deviation, been introduced quantify irregularity a graph. In this paper, we present sharp lower bounds for these indices in terms order, size, maximum degree, minimum forgotten Zagreb underlying We also prove that id="M3"> has value among all nonregular id="M4"> n , m -graphs, then id="M5"> Δ − δ = 1 .
منابع مشابه
The irregularity and total irregularity of Eulerian graphs
For a graph G, the irregularity and total irregularity of G are defined as irr(G)=∑_(uv∈E(G))〖|d_G (u)-d_G (v)|〗 and irr_t (G)=1/2 ∑_(u,v∈V(G))〖|d_G (u)-d_G (v)|〗, respectively, where d_G (u) is the degree of vertex u. In this paper, we characterize all connected Eulerian graphs with the second minimum irregularity, the second and third minimum total irregularity value, respectively.
متن کاملIrregularity strength of dense graphs
Let G be a simple graph of order n with no isolated vertices and no isolated edges. For a positive integer w, an assignment f on G is a function f : E(G) → {1, 2, . . . , w}. For a vertex v, f(v) is defined as the sum f(e) over all edges e of G incident with v. f is called irregular, if all f(v) are distinct. The smallest w for which there exists an irregular assignment on G is called the irreg...
متن کاملTotal vertex irregularity strength of corona product of some graphs
A vertex irregular total k-labeling of a graph G with vertex set V and edge set E is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by tvs(G)is the minimum value of the largest label k over all such irregular assignment. In this paper, we study the to...
متن کاملIrregularity Strength of Regular Graphs
Let G be a simple graph with no isolated edges and at most one isolated vertex. For a positive integer w, a w-weighting of G is a map f : E(G) → {1, 2, . . . , w}. An irregularity strength of G, s(G), is the smallest w such that there is a w-weighting of G for which ∑
متن کاملProduct irregularity strength of graphs
Consider a simple graph G with no isolated edges and at most one isolated vertex. A labeling w : E(G) → {1, 2, . . . ,m} is called product-irregular, if all product degrees pdG(v) = ∏ e3v w(e) are distinct. The goal is to obtain a product-irregular labeling that minimizes the maximum label. This minimum value is called the product irregularity strength. The analogous concept of irregularity str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics
سال: 2023
ISSN: ['2314-4785', '2314-4629']
DOI: https://doi.org/10.1155/2023/4891183